Rectifiability of Harmonic Measure in Domains with Porous Boundaries
نویسنده
چکیده
We show that if n ≥ 1, Ω ⊂ R is a connected domain that is porous around a subset E ⊂ ∂Ω of finite and positive Hausdorff H-measure, and the harmonic measure ω is absolutely continuous with respect to H on E, then ω|E is concentrated on an n-rectifiable set.
منابع مشابه
THE WEAK-A∞ PROPERTY OF HARMONIC AND p-HARMONIC MEASURES IMPLIES UNIFORM RECTIFIABILITY
Let E ⊂ Rn+1, n ≥ 2, be an Ahlfors-David regular set of dimension n. We show that the weak-A∞ property of harmonic measure, for the open set Ω := Rn+1 \ E, implies uniform rectifiability of E. More generally, we establish a similar result for the Riesz measure, p-harmonic measure, associated to the p-Laplace operator, 1 < p < ∞.
متن کاملAbsolute Continuity between the Surface Measure and Harmonic Measure Implies Rectifiability
In the present paper we prove that for any open connected set Ω ⊂ R, n ≥ 1, and any E ⊂ ∂Ω with 0 < H(E) < ∞ absolute continuity of the harmonic measure ω with respect to the Hausdorff measure on E implies that ω|E is rectifiable. CONTENTS
متن کاملApplication of truncated gaussian simulation to ore-waste boundary modeling of Golgohar iron deposit
Truncated Gaussian Simulation (TGS) is a well-known method to generate realizations of the ore domains located in a spatial sequence. In geostatistical framework geological domains are normally utilized for stationary assumption. The ability to measure the uncertainty in the exact locations of the boundaries among different geological units is a common challenge for practitioners. As a simple a...
متن کاملUniform Rectifiability, Carleson Measure Estimates, and Approximation of Harmonic Functions
Let E ⊂ Rn+1, n ≥ 2, be a uniformly rectifiable set of dimension n. Then bounded harmonic functions in Ω := Rn+1 \ E satisfy Carleson measure estimates, and are “ε-approximable”. Our results may be viewed as generalized versions of the classical F. and M. Riesz theorem, since the estimates that we prove are equivalent, in more topologically friendly settings, to quantitative mutual absolute con...
متن کاملThe Riesz Transform, Rectifiability, and Removability for Lipschitz Harmonic Functions
We show that, given a set E ⊂ Rn+1 with finite n-Hausdorff measure Hn, if the n-dimensional Riesz transform
متن کامل